Abstract

Trajectory optimization problem for spacecraft proximity rendezvous with path constraints was discussed using direct collocation method. Firstly, the model of spacecraft proximity rendezvous in elliptic orbit optimization control problem was presented, with the dynamic equations established in the target local orbital frame, and the performance index was minimizing the total fuel consumption. After that the optimal control problem was transcribed into a large scale problem of Nonlinear Programming Problem (NLP) by means of Hermite-Simpson discretization, which was one of the direct collocation methods. Then the nonlinear programming problem was solved using MATLAB software package SNOPT. Finally, to verify this method, the fuel-optimal trajectory for finite thrust was planned for proximity rendezvous with elliptic reference orbit. Numerical simulation results demonstrate that the proposed method was feasible, and was not sensitive to the initial condition, having good robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call