Abstract

This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a “bang-bang” profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.