Abstract

In this paper we present a trajectory generation method for autonomous overtaking of static obstacles in a dynamic urban environment. In these settings, blind spots can arise from perception limitations. For example, the autonomous car may have to move slightly into the opposite lane in order to cleanly see in front of a car ahead. Once it has gathered enough information about the road ahead, then the autonomous car can safely overtake. We generate safe trajectories by solving, in real-time, a non-linear constrained optimization, formulated as a Receding Horizon planner. The planner is guided by a high-level state machine, which determines when the overtake maneuver should begin. Our main contribution is a method that can maximize visibility, prioritizes safety and respects the boundaries of the road while executing the maneuver. We present experimental results in simulation with data collected during real driving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.