Abstract
This paper is based on a new trajectory optimization approach -Discrete Mechanics and Optimal Control (DMOC). The optimal trajectory generation and trajectory tracking controller of mobile robots are investigated. Firstly, DMOC is applied to generate an optimal reference trajectory which is constrained by specific optimization conditions to meet the given cost functional. Secondly, considering the high nonlinear and uncertainties are inevitably present in mobile robots, the reference trajectory is utilized in the proposed adaptive trajectory tracking controller with Backstepping concepts. The control system is on the basis of the dynamic equations and the real-time velocity vectors are served as control inputs. Finally, with the application of the optimal trajectory simulation platform, the control effect is verified. The simulation results prove that DMOC approach has certain accuracy, universality and applicability, besides the high nonlinear, strong coupling system with nonholonomic constraints. The designed trajectory tracking controller has good robustness and efficiency which is capable of adjusting the unknown parameters in real-time and realizing accurate and stable tracking control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.