Abstract

In this paper, we study the unmanned aerial vehicles (UAV) assisted relaying communication system, where a UAV acts the mobile relay and provides the information transfer from the source to the destination. The simultaneous wireless information and power transfer techniques are considered at the UAV relays, where the UAV harvests energy from the source node, and exclusively uses the harvested energy for the data relaying. To maximize the system throughput, we jointly consider the UAV trajectory optimization and resource allocation problem, where the UAV trajectory is optimized the UAV positions to harvest the benefits of the line-of-sight links, and resource allocation, including power allocation and the subcarrier allocation, is used to achieve optimal network performance with the power constraints. An alternating maximization algorithm is proposed to solve the optimization problem, in which the UAV trajectory optimization and resource allocation are solved iteratively to maximize the total throughput. Compared with other benchmarks, the proposed algorithm can achieve higher throughput by the benefits from UAV trajectory optimization and resource allocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call