Abstract
AbstractThe filtered Rayleigh scattering technique was implemented to discern the mechanisms associated with trajectory and mixing characteristics of buoyant jets in the presence of a coflow. A continuous wave laser in conjunction with a high-speed camera and a molecular filter constituted the equipment needed to obtain near-field concentration measurements of a carbon dioxide jet within a coflow of air. The arrangement enabled carbon dioxide concentration measurements with and without the coflow at a sampling rate of 400 Hz. The time-averaged results demonstrate the significance that adding the coflow has on increasing the mixing rate, thus reducing the impact of the buoyant jet by flattening the jet trajectory. The effects of various flow parameters such as the jet velocity, the jet to coflow velocity ratio, the relative velocity between the jet and the coflow, and the Froude number on the jet trajectory are studied. The downward trajectory of the carbon dioxide jet, absent a coflow, was well correlated...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.