Abstract

We propose an approach to modelling multidimensional quantum systems which uses direct-dynamics trajectories to guide wavefunction propagation. First, trajectory simulations are used to generate a sample of dynamically relevant configurations on the potential energy surface (PES). Second, the sampled configurations are used to construct an n-mode representation of the PES using a greedy algorithm. Finally, the time-dependent Schrödinger equation is solved using a configuration interaction expansion of the wavefunction, with individual basis functions derived directly from the 1-mode contributions to the n-mode PES. This approach is successfully demonstrated by application to a 20-dimensional benchmark problem describing tunnelling in the presence of coupled degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call