Abstract

We investigate the role of vibrational energy excitation of methane and two deuterated species (CD(4) and CH(2)D(2)) in the collision-induced dissociation (CID) process with argon at hyperthermal energies. The quasi-classical trajectory method has been applied, and the reactive Ar + CH(4) system has been modeled by using a modified version of the CH(4) potential energy surface of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339) and the Ar-CH(4) intermolecular potential function obtained by Troya (J. Phys. Chem. A 2005, 109, 5814). This study clearly shows that CID is markedly enhanced with vibrational excitation and, to a lesser degree, with collision energy. In general, CID increases by exciting stretch vibrational modes of the reactant molecule. For the direct dissociation of CH(4), however, the CID cross sections appear to be essentially independent of which vibrational mode is initially excited. In all situations studied, the CID cross sections are always greater for the Ar + CD(4) reaction than for the Ar + CH(4) one, the Ar + CH(2)D(2) being an intermediate situation. A detailed analysis of the energy transfer processes, including their relation with CID, is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.