Abstract

In this study, we propose a trajectory data-driven network representation method, specifically leveraging directional statistics. This approach allows us to extract major intersections and define links from observed trajectories, thereby mitigating the reliance on existing network data and map matching. We apply Graph Convolutional Networks and Long-Short Term Memory models to the trajectory data-driven network representation, suggesting the potential for fast and accurate traffic state prediction. The results imply significant reduction in computational complexity while demonstrating promising prediction accuracy. Our proposed method offers a valuable approach for analyzing and modeling transportation networks using real-world trajectory data, providing insights into traffic patterns and facilitating the exploration of more efficient traffic management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.