Abstract
This study presents the design, analysis, dynamical modeling and control of a planar, flexure based closed chain compliant mechanism. Mechanism is designed as a single piece and comprised of rigid-flexure links connected in series. Base links of the mechanism can be actuated through two servo motors and translated along the horizontal direction using two step motors. Two servo motors are mounted on a rail-cart system and carts are equipped with belt drive to enable horizontal displacement. Dynamical model of the mechanism is derived by adapting pseudo rigid body modeling method, vector closure loop equations, Euler’s laws of motion and geometric constraints. Mechanism is 3D printed using thermoplastic polyurethane filament (TPU), motion of the mechanism is video recorded and position of the tip along with the motion of center of each links are captured using image processing. Mathematical model is simulated in Matlab Simulink and validated with the experimental data. A reference trajectory drawn within the workspace of the mechanism on iPad is successfully traced in real time using the simplified model, mirror imaging program and inverse kinematics. The proposed mechanism can be utilized as a haptic device and a compliant manipulator in industrial applications where high precision and larger workspace is desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.