Abstract

AbstractThis paper presents a methodology to control the trajectory of cooperative connected automated vehicles (CAVs) at roundabouts with a mixed fleet of CAVs and human‐driven vehicles (HVs). We formulate an optimization program in a two‐dimensional space for this purpose. A model predictive control‐based solution technique is developed to optimize the trajectories of CAVs at discretized time steps based on the estimated driving behavior of HVs, while the actual behavior of HVs is controlled by a microscopic traffic simulator. At each time step, the location and speed of vehicles are collected, and a decomposition‐based methodology optimizes CAV trajectories for a few time steps ahead of the system time. The optimization methodology has convexification, alternating direction method of multipliers, and cutting plane decomposition components to tackle the complexities of the problem. We tested the solution technique in a case study roundabout with different traffic demand flow rates and CAV market penetration rates. The results showed that increasing the CAV market penetration rate from 20% to 100% reduced total travel times by 2.8% to 35.8%. The analyses indicate that the presence of cooperative CAVs in roundabouts can lead to considerable improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.