Abstract

Due to the advancement of camera hardware and machine learning techniques, video object tracking for surveillance has received noticeable attention from the computer vision research community. Object tracking and trajectory modeling have important applications in surveillance video analysis. For example, trajectory clustering, summarization or synopsis generation, and detection of anomalous or abnormal events in videos are mainly being exploited by the research community. However, barring one research work (which is almost a decade old), there is no recent review that emphasizes the use of video object trajectories, particularly in the perspective of visual surveillance. This paper presents a survey of trajectory-based surveillance applications with a focus on clustering, anomaly detection, summarization, and synopsis generation. The methods reviewed in this paper broadly summarize the abovementioned applications. The main purpose of this survey is to summarize the state-of-the-art video object trajectory analysis techniques used in the indoor and outdoor surveillance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.