Abstract

In this work the theory of generalized processes is used to describe the dynamics of a nonautonomous multivalued problem and, through this approach, some conditions for the existence of trajectory attractors are proved. By projecting the trajectory attractor on the phase space, the uniform attractor for the multivalued process associated to the problem is obtained and some conditions to guarantee the invariance of the uniform attractor are given. Furthermore, the existence of the uniform attractor for a class of \begin{document}$ p $\end{document} -Laplacian non-autonomous problems with dynamical boundary conditions is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.