Abstract

A liquid jet resulting from the laminar rotary spraying of an oil-in-water emulsion (O/W) with a zero shear viscosity of 60mPas and a surface tension on the order 40mN/m has been studied by means of a high-speed camera. The liquid flow rate and rotational speed of the rotary sprayer are tuned so that the liquid filament breaks up into droplets under Rayleigh breakup conditions. From the high-speed imagery we consider in detail the dominant forces, which define the shape of the liquid jet near the nozzle exit. We use the formation of Rayleigh disturbances as a tracing mechanism across multiple high-speed video frames to determine the role that rotational forces, surface tension, viscous forces and wind resistance play on the shape of the liquid filament as well as the formation of resulting droplets. From this analysis it is determined that rotational forces play the dominant role, thus resulting in a simplified parametric model of the liquid jet trajectory based on the Rossby number only. This model is compared to a previous model defined in the Frenet-Serret frame of reference and shown to be the same under our simplifying assumptions. Image analysis of the liquid filament trajectories shows that the assumptions made in the model are valid under the experimental conditions considered here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.