Abstract

In this paper, the optimal time planning of vibration separation trajectory of Hippophae rhamnoides fruit is studied for space manipulator using the I-PSO algorithm. The first step is to analyze the motion of the robotic arm's joints, which are limited in range and speed, in combination with a 3–5–3 polynomial interpolation, an improved Particle swarm optimization with adaptive inertia weight and asynchronous learning factor is proposed, and the specific process is given. Experimental images and data show that the improved particle swarm optimization algorithm can ensure the continuity of joint acceleration and velocity, and the optimal vibration trajectory time is 0.536539094 s Compared with the planned system trajectory time of 0.71022 s, the speed increased by 24.5%. The results of the orthogonal experiment show that the average fruit drop rate reaches 96.19%, which verifies the validity and reliability of the I-PSO algorithm for optimal time planning of seabuckthorn fruit separation vibration trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.