Abstract

Using a Green's function approach, we compare the trajectories of classical Hamiltonian point particles in an expanding space-time to the effectively inertial trajectories in the Zel'dovich approximation. It is shown that the effective gravitational potential accelerating the particles relative to the Zel'dovich trajectories vanishes exactly initially as a consequence of the continuity equation, and acts only during a short, early period. The Green's function approach suggests an iterative scheme for improving the Zel'dovich trajectories, which can be analytically solved. We construct these trajectories explicitly and show how they interpolate between the Zel'dovich and the exact trajectories. The effective gravitational potential acting on the improved trajectories is substantially smaller at late times than the potential acting on the exact trajectories. The results may be useful for Lagrangian perturbation theory and for numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.