Abstract

Background: Individuals with severe mental illnesses are at greater risk of offenses and violence, though the relationship remains unclear due to the interplay of static and dynamic risk factors. Static factors have generally been emphasized, leaving little room for temporal changes in risk. Hence, this longitudinal study aims to identify subgroups of psychiatric populations at risk of violence and criminality by taking into account the dynamic changes of symptomatology and substance use. Method: A total of 825 patients from the MacArthur Violence Risk Assessment Study having completed five postdischarge follow-ups were analyzed. Individuals were classified into outcome trajectories (violence and criminality). Trajectories were computed for each substance (cannabis, alcohol, and cocaine, alone or combined) and for symptomatology and inputted as dynamic factors, along with other demographic and psychiatric static factors, into binary logistic regressions for predicting violence and criminality. Best predictors were then identified using backward elimination, and receiver operator characteristic (ROC) curves were calculated for both models. Results: Two trajectories were found for violence (low versus high violence). Best predictors for belonging in the high-violence group were low verbal intelligence (baseline), higher psychopathy (baseline) and anger (mean) scores, persistent cannabis use (alone), and persistent moderate affective symptoms. The model’s area under the curve (AUC) was 0.773. Two trajectories were also chosen as being optimal for criminality. The final model to predict high criminality yielded an AUC of 0.788, retaining as predictors male sex, lower educational level, higher score of psychopathy (baseline), persistent polysubstance use (cannabis, cocaine, and alcohol), and persistent cannabis use (alone). Both models were moderately predictive of outcomes. Conclusion: Static factors identified as predictors are consistent with previously published literature. Concerning dynamic factors, unexpectedly, cannabis alone was an independent co-occurring variable, as well as affective symptoms, in the violence model. For criminality, our results are novel, as there are very few studies on criminal behaviors in nonforensic psychiatric populations. In conclusion, these results emphasize the need to further study the predictors of crime, separately from violence and the impact of longitudinal patterns of specific substance use and high affective symptoms.

Highlights

  • Violence is a complex and multifactorial issue that has serious health and social consequences [1]

  • This longitudinal study aimed to identify static and dynamic factors associated with violent and criminal behavior in a group of patients having recently been discharged from a psychiatric facility

  • Our findings regarding static predictors of violence are consistent with previous work and are relevant to better understanding the relationship between specific substance use and violence

Read more

Summary

Introduction

Violence is a complex and multifactorial issue that has serious health and social consequences [1]. The association between psychiatric illnesses and violence is complex mainly due to the interplay of a variety of static and dynamic factors [6, 7]. Individuals with severe mental illnesses are at greater risk of offenses and violence, though the relationship remains unclear due to the interplay of static and dynamic risk factors. Static factors have generally been emphasized, leaving little room for temporal changes in risk. This longitudinal study aims to identify subgroups of psychiatric populations at risk of violence and criminality by taking into account the dynamic changes of symptomatology and substance use

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.