Abstract

We consider a class of differential-algebraic equations (DAEs) defined by analytic nonlinearities and study its singular solutions. The main assumption used is that the linearization of the DAE represents a Kronecker index-2 matrix pencil and that the constraint manifold has a quadratic fold along its singularity.From these assumptions we obtain a normal form for the DAE where the presence of the singularity and its effects on the dynamics of the problem are made explicit in the form of a quasi-linear differential equation. Subsequently, two distinct types of singular points are identified through which there pass exactly two analytic solutions: pseudo-nodes and pseudo-saddles. We also demonstrate that a singular point called a pseudo-node supports an uncountable infinity of solutions which are not analytic in general.Moreover, akin to known results in the literature for DAEs with singular equilibria, a degenerate singularity is found through which there passes one analytic solution such that the singular point in question is contained within a quasi-invariant manifold of solutions. We call this type of singularity a pseudo-centre and it provides not only a manifold of solutions which intersects the singularity, but also a local flow on that manifold which solves the DAE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.