Abstract

Tidal marshes are increasingly valued for their nature-based shoreline protection function, as they reduce waves, currents and erosion. The effectiveness of this function depends on the ability of tidal marsh plants to grow and survive under pressure from waves and currents. However, how this varies with species-dependent plant traits is poorly understood. We performed a field transplantation experiment to quantify species-specific growth responses to different levels of hydrodynamic exposure and tidal inundation for 3 NW European marsh species: Schoenoplectus tabernaemontani, Bolboschoenus maritimus and Phragmites australis. In this order, these species showed increasing shoot stiffness, length and biomass, which are traits that increase hydrodynamic drag forces experienced by plants. Increased exposure to tidal inundation and hydrodynamics reduced the growth of all 3 species, but species with lower biomass and shorter, thinner and more flexible shoots could better cope with higher hydrodynamic exposure and tidal inundation. Furthermore, transplants of S. tabernaemontani (i.e. the species with the lowest shoot stiffness, length and biomass that survived under all tested conditions) developed smaller, thinner and more flexible shoots in response to higher hydrodynamic exposure and inundation. Hence our study indicates that similar inter- and intra-specific plant traits drive plant growth in response to hydrodynamics and inundation. This suggests that the spatial distribution of species typically observed in tidal marshes results not only from species-specific tolerance to tidal inundation gradients but also from hydrodynamic gradients. Allowing enough space for development of species zonation may be important to increase the efficiency of nature-based shoreline protection by tidal marshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.