Abstract

ABSTRACT Dinoflagellates are amongst the most abundant and diverse groups of plankton in surface waters and contribute to food web productivity and C:N:P biogeochemistry. Here we analyse the C:N:P of marine, autotrophic, planktonic dinoflagellates compiled from culture data from the scientific literature and test if dinoflagellate C:N:P differs from the Redfield ratio, and whether variability in C:N:P is associated with three traits: cell size, wall structure and toxin production. We find the average C:N:P of dinoflagellates is 90:12:1; higher in C:N, and lower in C:P and N:P than the canonical Redfield ratio. In aggregate the three traits examined here account for between 20–31% while taxonomic order accounts for between 37–38% of the variance in C:N:P. Smaller-sized and thecate taxa are higher in C:N, C:P and N:P than larger-size and athecate taxa. Species known to be able to produce C-rich toxins tend to be higher in C:P and N:P while species known to be able to produce N-rich toxins are lower in C:N, C:P and N:P relative to non-toxic species. These results indicate that any average estimate of dinoflagellate C:N:P will be influenced by the relative number of taxa with these traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.