Abstract

The physical processes driving chemical evolution in the Milky Way can be probed using the distribution of abundances in low-mass FGK type stars in space phase at different times. During their final stages of evolution, stars experience nucleosynthesis several times, each at different timescales and producing different chemical elements. Finding abundance ratios that have simple variations across cosmic times therefore remains a challenge. Using the sample of 80 solar twins for which ages and abundances of 30 elements have been measured with high precision, we searched for all possible abundance ratio combinations that show linear trends with age. We found 55 such ratios, all combining an n-capture element and another element produced by different nucleosynthesis channels. We recovered the ratios of [Y/Mg], [Ba/Mg], and [Al/Y] that have been reported previously in the literature, and found that [C/Ba] depends most strongly on age, with a slope of 0.049 ± 0.003 dex Gyr−1. This imposes constraints on the magnitude of the time dependency of abundance ratios in solar twins. Our results suggest that s-process elements, in lieu of Fe, should be used as a reference for constraining chemical evolution models of the solar neighbourhood. Our study illustrates that a wide variety of chemical elements measured in high-resolution spectra is key to meeting the current challenges in understanding the formation and evolution of our Galaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call