Abstract

We present the first traitor tracing scheme with efficient black-box traitor tracing in which the ratio of the ciphertext and plaintext lengths (the transmission rate) is asymptotically 1, which is optimal. Previous constructions in this setting either obtained constant (but not optimal) transmission rate [16], or did not support black-box tracing [10]. Our treatment improves the standard modeling of black-box tracing by additionally accounting for pirate strategies that attempt to escape tracing by purposedly rendering the transmitted content at lower quality.Our construction relies on the decisional bilinear Diffie-Hellman assumption, and attains the same features of public traceability as (a repaired variant of) [10], which is less efficient and requires non-standard assumptions for bilinear groups.KeywordsTraitor TracingConstant Transmission RateFingerprint CodesBilinear Maps

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.