Abstract

AbstractAimFood webs are essential for understanding how ecosystems function, but empirical data on the interactions that make up these ecological networks are lacking for most taxa in most ecosystems. Trait‐based models can fill these data gaps, but their ability to do so has not been widely tested. We test how well these models can extrapolate to new ecological communities both in terms of pairwise predator–prey interactions and higher level food web attributes (i.e. species position, food web‐level properties).LocationCanada, Europe, Tanzania.Time PeriodCurrent.Major Taxa StudiedTerrestrial vertebrates.MethodsWe train trait‐based models of pairwise trophic interactions on four independent vertebrate food webs (Canadian tundra, Serengeti, alpine south‐eastern Pyrenees and Europe) and evaluate how well these models predict pairwise interactions and network properties of each food web.ResultsWe find that, overall, trait‐based models predict most interactions and their absence correctly. Performance was best for training and testing on the same food web (AUC > 0.90) and declined with environmental and phylogenetic distances with the strongest loss of performance for the tundra‐Serengeti ecosystems (AUC > 0.75). Network metrics were less well‐predicted than single interactions by our models with predicted food webs being more connected, less modular, and with higher mean trophic levels than observed.Main ConclusionsTheory predicts that the variability observed in food webs can be explained by differences in trait distributions and trait‐matching relationships. Our finding that trait‐based models can predict many trophic interactions, even in contrasting environments, adds to the growing body of evidence that there are general constraints on interactions and that trait‐based methods can serve as a useful first approximation of food webs in unknown areas. However, food webs are more than the sum of their parts, and predicting network attributes will likely require models that simultaneously predict individual interactions and community constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.