Abstract

Primary hyperoxalurias are rare disease with autosomal recessive inheritance; they often lead to kidney failure and can lead to life-threatening conditions, especially in early onset forms. There are three types, responding to distinct enzyme deficits. Type 1 represents 85% of cases and results from an enzyme deficiency (alanine-glyoxylate aminotransferase) in the peroxisomes of the liver, causing hyperoxaluria leading to urolithiasis with or without nephrocalcinosis. As glomerular filtration decreases, a systemic overload appears and spares no organ. Treatment has hitherto been based on combined liver and kidney transplantation, with significant mortality and morbidity. The recent introduction of interfering RNA treatments opens up new perspectives. By blocking an enzymatic synthesis (glycolate oxidase or lacticodehydrogenase a) upstream of the deficit that causes the disease, oxaluria normalizes and the tolerance of the drug (administered by injection every 1 to 3 months) is good. This strategy will help prevent kidney failure in patients treated early and avoid liver transplantation in those who are diagnosed at an advanced stage of kidney failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call