Abstract

Morphology and phenology influence plant-pollinator network structure, but whether they generate more stable pairwise interactions with higher pollination success remains unknown. Here we evaluate the importance of morphological trait matching, phenological overlap and specialisation for the spatio-temporal stability (measured as variability) of plant-pollinator interactions and for pollination success, while controlling for species' abundance. To this end, we combined a 6-year plant-pollinator interaction dataset, with information on species traits, phenologies, specialisation, abundance and pollination success, into structural equation models. Interactions among abundant plants and pollinators with well-matched traits and phenologies formed the stable and functional backbone of the pollination network, whereas poorly matched interactions were variable in time and had lower pollination success. We conclude that phenological overlap could be more useful for predicting changes in species interactions than species abundances, and that non-random extinction of species with well-matched traits could decrease the stability of interactions within communities and reduce their functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.