Abstract

Standard support vector machines (SVMs) training algorithms have O(l 3) computational and O(l 2) space complexities, where l is the training set size. It is thus computationally infeasible on very large data sets. To alleviate the computational burden in SVM training, we propose an algorithm to train SVMs on a bound vectors set that is extracted based on Fisher projection. For linear separate problems, we use linear Fisher discriminant to compute the projection line, while for non-linear separate problems, we use kernel Fisher discriminant to compute the projection line. For each case, we select a certain ratio samples whose projections are adjacent to those of the other class as bound vectors. Theoretical analysis shows that the proposed algorithm is with low computational and space complexities. Extensive experiments on several classification benchmarks demonstrate the effectiveness of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.