Abstract

Neuromorphic vision sensors (event cameras) are inherently suitable for spiking neural networks (SNNs) and provide novel neuromorphic vision data for this biomimetic model. Due to the spatiotemporal characteristics, novel data augmentations are required to process the unconventional visual signals of these cameras. In this paper, we propose a novel Event Spatio Temporal Fragments (ESTF) augmentation method. It preserves the continuity of neuromorphic data by drifting or inverting fragments of the spatiotemporal event stream to simulate the disturbance of brightness variations, leading to more robust spiking neural networks. Extensive experiments are performed on prevailing neuromorphic datasets. It turns out that ESTF provides substantial improvements over pure geometric transformations and outperforms other event data augmentation methods. It is worth noting that the SNNs with ESTF achieve the state-of-the-art accuracy of 83.9% on the CIFAR10-DVS dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.