Abstract

This paper proposes a novel algorithm for training recurrent neural network models of nonlinear dynamical systems from an input/output training dataset. Arbitrary convex and twice-differentiable loss functions and regularization terms are handled by sequential least squares and either a line-search (LS) or a trust-region method of Levenberg–Marquardt (LM) type for ensuring convergence. In addition, to handle non-smooth regularization terms such as ℓ1, ℓ0, and group-Lasso regularizers, as well as to impose possibly non-convex constraints such as integer and mixed-integer constraints, we combine sequential least squares with the alternating direction method of multipliers (ADMM). We call the resulting algorithm NAILS (nonconvex ADMM iterations and least squares) in the case line search (LS) is used, or NAILM if a trust-region method (LM) is employed instead. The training method, which is also applicable to feedforward neural networks as a special case, is tested in three nonlinear system identification problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.