Abstract

Abstract We provide in this paper a concrete method for training a quantum neural network to maximize the relevant information about a property that is transmitted through the network. This is significant because it gives an operationally well founded quantity to optimize when training autoencoders for problems where the inputs and outputs are fully quantum. We provide a rigorous algorithm for computing the value of the quantum information bottleneck quantity within error ε that requires O ( log 2 ⁡ ( 1 / ϵ ) + 1 / δ 2 ) queries to a purification of the input density operator if its spectrum is supported on { 0 } ⋃ [ δ , 1 − δ ] for δ > 0 and the kernels of the relevant density matrices are disjoint. We further provide algorithms for estimating the derivatives of the QIB function, showing that quantum neural networks can be trained efficiently using the QIB quantity given that the number of gradient steps required is polynomial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.