Abstract
Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, gradient descent techniques often get trapped in local optima of the search landscape. To address this issue, an ant colony optimization (ACO) algorithm is applied to train feed-forward neural networks for pattern classification in this paper. In addition, the ACO training algorithm is hybridized with gradient descent training. Both standalone and hybrid ACO training algorithms are evaluated on several benchmark pattern classification problems, and compared with other swarm intelligence, evolutionary and traditional training algorithms. The experimental results show the efficiency of the proposed ACO training algorithms for feed-forward neural networks for pattern classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.