Abstract
A new global optimization strategy for training adaptive systems such as neural networks and adaptive filters [finite or infinite impulse response (FIR or IIR)] is proposed in this paper. Instead of adding random noise to the weights as proposed in the past, additive random noise is injected directly into the desired signal. Experimental results show that this procedure also speeds up greatly the backpropagation algorithm. The method is very easy to implement in practice, preserving the backpropagation algorithm and requiring a single random generator with a monotonically decreasing step size per output channel. Hence, this is an ideal strategy to speed up supervised learning, and avoid local minima entrapment when the noise variance is appropriately scheduled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.