Abstract
BackgroundControlled static exertion performed in the sagittal plane on a transducer attached to the foot requires coordinated moments of force of the lower extremity. Some exertions and plantarflexion recruit muscular activation patterns similar to synergies previously identified during gait. It is currently unknown if persons with hemiparesis following stroke demonstrate similar muscular patterns, and if force feedback training utilizing static exertion results in improved mobility in this population.MethodsElectromyographic (EMG) activity of eight muscles of the lower limb were recorded using surface electrodes in healthy participants (n = 10) and in persons with hemiparesis (n = 8) during an exertion exercise (task) performed in eight directions in the sagittal plane of the foot and a plantarflexion exercise performed at 20 and 40% maximum voluntary effort (MVE). Muscle activation patterns identified during these exertion exercises were compared between groups and to synergies reported in the literature during healthy gait using cosine similarities (CS). Functional mobility was assessed in four participants with hemiparesis using GAITRite® and the Timed Up and Go (TUG) test at each session before, during and after static force feedback training. Tau statistics were used to evaluate the effect on mobility before and after training. Measures of MVE and the accuracy of directional exertion were compared before and after training using ANOVAs. Spearman Rho correlations were also calculated between changes in these parameters and changes in mobility before and after the training.ResultsMuscle activation patterns during directional exertion and plantarflexion were similar for both groups of participants (CS varying from 0.845 to 0.977). Muscular patterns for some of the directional and plantarflexion were also similar to synergies recruited during gait (CS varying from 0.847 to 0.951). Directional exertion training in hemiparetic subjects resulted in improvement in MVE (p < 0.040) and task performance accuracy (p < 0.001). Hemiparetic subjects also demonstrated significant improvements in gait velocity (p < 0.032) and in the TUG test (p < 0.022) following training. Improvements in certain directional efforts were correlated with changes in gait velocity (p = 0.001).ConclusionStatic force feedback training following stroke improves strength and coordination of the lower extremity while recruiting synergies reported during gait and is associated with improved mobility.
Highlights
Controlled static exertion performed in the sagittal plane on a transducer attached to the foot requires coordinated moments of force of the lower extremity
Static force feedback training following stroke improves strength and coordination of the lower extremity while recruiting synergies reported during gait and is associated with improved mobility
The first objective of this study was to determine if directional exertions and static plantarflexion resulted in similar muscle activation patterns in people with hemiparesis and healthy participants, and if such activation patterns were similar to synergies reported during gait in healthy persons [11]
Summary
Controlled static exertion performed in the sagittal plane on a transducer attached to the foot requires coordinated moments of force of the lower extremity. Some exertions and plantarflexion recruit muscular activation patterns similar to synergies previously identified during gait It is currently unknown if persons with hemiparesis following stroke demonstrate similar muscular patterns, and if force feedback training utilizing static exertion results in improved mobility in this population. One-third of individuals who suffer a stroke have not regained independent mobility when discharged from rehabilitation and are unable to walk unsupervised in the community [2]. Small effect sizes of strength training on gait parameters in this population may be the result of a lack of specificity of muscles selected and a failure to improve multiarticular movements requiring muscle activation of a coordinated group of muscles involved in locomotion. Strengthening exercises involving multiarticular muscles (e.g., leg press) appear to be better at improving strength and function in individuals with hemiparesis than isolated monoarticular exercises such as leg extensions [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.