Abstract

A model-training module generates mixture Gaussian density models from speech training data for continuous, or isolated word speech recognition systems. Speech feature sequences are labeled into segments of states of speech units using Viterbi-decoding based optimized segmentation algorithm. Each segment is modeled by a Gaussian density, and the parameters are estimated by sample mean and sample covariance. A mixture Gaussian density is generated for each state of each speech unit by merging the Gaussian densities of all the segments with the same corresponding label. The resulting number of mixture components is proportional to the dispersion and sample size of the training data. A single, fully merged, Gaussian density is also generated for each state of each speech unit. The covariance matrices of the mixture components are selectively smoothed by a measure of relative sharpness of the Gaussian density and the smoothing can also be done blockwise. The weights of the mixture components are set uniformly initially, and are reestimated using a segmental-average procedure. The weighting coefficients, together with the Gaussian densities, then become the models of speech units for use in speech recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call