Abstract

An algorithm to solve the least square support vector machine (LSSVM) is presented. The underlying optimization problem for LSSVM follows a system of linear equations. The proposed algorithm incorporates a fuzzy c-mean (FCM) clustering approach and the application of a recurrent neural network (RNN) to solve the system of linear equations. First, a reduced training set is obtained by the FCM clustering approach and used to train LSSVM. Then a gradient system with discontinuous righthand side, interpreted as an RNN, is designed by using the corresponding system of linear equations. The fusion of FCM clustering approach and RNN overcomes the loss of spareness of LSSVM. The efficiency of the algorithm is empirically shown on a benchmark data set generated from the University of California at Irvine (UCI) machine learning database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.