Abstract

While a number of practical methods for training quantized DL models have been presented in the literature, there exists a critical gap in the theoretical generalizability results for such approaches. Although empirical evidence often suggests a high tolerance of DL architectures to variations of training procedures, existing theoretical generalization analyses are often contingent on the specific designs of training algorithms, e.g., in stochastic gradient descent (SGD). This specialization makes such generalizability results inapplicable to the case of quantized DL models. In view of this critical vacuum, this paper provides several almost-algorithm-independent results to ensure the generalizability of a quantized neural network at different levels of optimality. These results include the characterizations of a computable, quantized local solution that ensures the generalization performance and an algorithm that is provably convergent to such a local solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.