Abstract

State-of-the-art probabilistic planners typically apply look- ahead search and reasoning at each step to make a decision. While this approach can enable high-quality decisions, it can be computationally expensive for problems that require fast decision making. In this paper, we investigate the potential for deep learning to replace search by fast reactive policies. We focus on supervised learning of deep reactive policies for probabilistic planning problems described in RDDL. A key challenge is to explore the large design space of network architectures and training methods, which was critical to prior deep learning successes. We investigate a number of choices in this space and conduct experiments across a set of benchmark problems. Our results show that effective deep reactive policies can be learned for many benchmark problems and that leveraging the planning problem description to define the network structure can be beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.