Abstract
Training data for deep learning algorithms can have many redundancies, which should be resolved to achieve faster training speed and efficient storage usage. We proposed a random sample consensus (RANSAC)-based training data selection technique to reduce the training data size for deep learning-based image classification tasks. First, we formulate the data reduction problem as a least square problem and reformulate the equation as maximizing the accuracy of the total training set. Based on the reformulated equation, we applied an RANSAC algorithm to solve the optimization problem. We obtain superior or comparable accuracies to other data selection approaches, such as random, greedy k-means-based, and least square-based approaches. Notably, our algorithm was not degraded in small data selection, unlike other state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.