Abstract

Accurately basecalling sequence backbones in the presence of nucleotide modifications remains a substantial challenge in nanopore sequencing bioinformatics. It has been extensively demonstrated that state-of-the-art basecallers are less compatible with modification-induced sequencing signals. A precise basecalling, on the other hand, serves as the prerequisite for virtually all the downstream analyses. Here, we report that basecallers exposed to diverse training modifications gain the generalizability to analyze novel modifications. With synthesized oligos as the model system, we precisely basecall various out-of-sample RNA modifications. From the representation learning perspective, we attribute this generalizability to basecaller representation space expanded by diverse training modifications. Taken together, we conclude increasing the training data diversity as a novel paradigm for building modification-tolerant nanopore sequencing basecallers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.