Abstract
Edge detection in SAR images is a difficult task due to the strong multiplicative noise. Many researches have been dedicated to edge detection in SAR images but very few try to address the most challenging 1-look situations. Motivated by the success of CNNs for the analysis of natural images, we develop a CNN edge detector for 1-look SAR images. We propose to simulate a SAR dataset using the optical dataset BSDS500 to avoid the tedious job of edge labeling, and we propose a framework, a hand-crafted layer followed by learnable layers, to enable the model trained on simulated SAR images to work in real SAR images. The hypothesis behind these two propositions is that both optical and SAR images can be divided into piecewise constant areas and edges are boundaries between two homogeneous areas. The hand-crafted layer, which is defined by a ratio based gradient computation method, helps to tackle the gap between training and testing images, because the gradient distribution will not be influenced by the mean intensity values of homogeneous areas. The gradient computation step is done by Gradient by Ratio (GR) and the learnable layers are identical to those in HED. The proposed edge detector, GRHED, outperforms concurrent approaches in all our simulations especially in two 1-look real SAR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.