Abstract
This paper is a comparative study of training-based and semiblind multiple-input multiple-output (MIMO) flat-fading channel estimation schemes when the transmitter employs maximum ratio transmission (MRT). We present two competing schemes for estimating the transmit and receive beamforming vectors of the channel matrix: a training-based conventional least-squares estimation (CLSE) scheme and a closed-form semiblind (CFSB) scheme that employs training followed by information-bearing spectrally white data symbols. Employing matrix perturbation theory, we develop expressions for the mean-square error (MSE) in the beamforming vector, the average received signal-to-noise ratio (SNR) and the symbol error rate (SER) performance of both the semiblind and the conventional schemes. Finally, we describe a weighted linear combiner of the CFSB and CLSE estimates for additional improvement in performance. The analytical results are verified through Monte Carlo simulations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.