Abstract

This study explored mitochondrial capacities to oxidize carbohydrate and fatty acids and functional optimization of mitochondrial respiratory chain complexes in athletes who regularly train at high exercise intensity (ATH, n = 7) compared with sedentary (SED, n = 7). Peak O(2) uptake (Vo(2max)) was measured, and muscle biopsies of vastus lateralis were collected. Maximal O(2) uptake of saponin-skinned myofibers was evaluated with several metabolic substrates [glutamate-malate (V(GM)), pyruvate (V(Pyr)), palmitoyl carnitine (V(PC))], and the activity of the mitochondrial respiratory complexes II and IV were assessed using succinate (V(s)) and N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (V(TMPD)), respectively. Vo(2max) was higher in ATH than in SED (57.8 +/- 2.2 vs. 31.4 +/- 1.3 ml.min(-1).kg(-1), P < 0.001). V(GM) was higher in ATH than in SED (8.6 +/- 0.5 vs. 3.3 +/- 0.3 micromol O(2).min(-1).g dry wt(-1), P < 0.001). V(Pyr) was higher in ATH than in SED (8.7 +/- 1.0 vs. 5.5 +/- 0.2 micromol O(2).min(-1).g dry wt(-1), P < 0.05), whereas V(PC) was not significantly different (5.3 +/- 0.9 vs. 4.4 +/- 0.5 micromol O(2).min(-1).g dry wt(-1)). V(S) was higher in ATH than in SED (11.0 +/- 0.6 vs. 6.0 +/- 0.3 micromol O(2).min(-1).g dry wt(-1), P < 0.001), as well as V(TMPD) (20.1 +/- 1.0 vs. 16.2 +/- 3.4 micromol O(2).min(-1).g dry wt(-1), P < 0.05). The ratios V(S)/V(GM) (1.3 +/- 0.1 vs. 2.0 +/- 0.1, P < 0.001) and V(TMPD)/V(GM) (2.4 +/- 1.0 vs. 5.2 +/- 1.8, P < 0.01) were lower in ATH than in SED. In conclusion, comparison of ATH vs. SED subjects suggests that regular endurance training at high intensity promotes the enhancement of maximal mitochondrial capacities to oxidize carbohydrate rather than fatty acid and induce specific adaptations of the mitochondrial respiratory chain at the level of complex I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.