Abstract

The railway traffic is characterized as a large and dynamic system with uncertain properties related to resource loading, train arrivals and failures. Despite these uncertainties, the control system is expected to guarantee that all the trains behave according to their timelines. The current approach solves the railway traffic control problem using the resource allocation. The trains are considered tasks with specified temporal behaviors that have to fulfill their deadlines. The solutions based on open loop, closed loop with independent, coordinated and heterarchical controllers are defined and compared. The control signals are implemented and verified using time Petri nets. Some algorithms for control system implementation are given. The method evaluations are performed using the meter functions: utility, utilization, reservation and efficiency. The results obtained through simulations show that the proposed distributed controllers solve adequately the control problems and can be used for large scale implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.