Abstract

EEG differences were examined between part and whole practice in the learning of a novel motor task. Recording was done at 4 sites (i.e., O1, O2, C3, and C4) on 30 participants who performed a novel mirror star tracer task. Individuals were randomly assigned to 3 groups: whole practice, part practice, and control (no practice). Whole practice is defined as practicing a skill in its entirety. Part practice is defined as practicing separate, independent parts of the skill, and gradually combining those parts with parts that are dependent on one another. Each group was assessed during a pretest and posttest. EEG data was analyzed using a 2×2×2×3 (trials×hemisphere×site×practice) repeated measures mixed model ANOVA for each of the wave bands (lower alpha, upper alpha, lower beta, upper beta). All participants performed the task faster as no practice effect was found across the three groups; however the part practice group exhibited a significant decrease in errors. Reduced activation in the occipital and central sites was observed for lower alpha in the posttest compared to the pretest, for all participants. Hemispheric differences were present for all wavebands, with greater activation in the left hemisphere independent of practice type. The results of our study indicate that task learning was likely associated with the observed changes in the lower alpha waveband. Further, a concomitant behavior between the hemispheric lateralization of alpha and beta waveforms was observed. These results have implications for athlete training and rehabilitation. They indicate the utility of EEG for learning assessment in athletes. They also indicate learning strategies with a partial movement focus may be a beneficial strategy to support the development of complex sport skills training and rehabilitation strategies focused on reacquisition of skills prior to sport reintegration.

Highlights

  • Research in motor learning has been performed with nonfunctional, non-novel tasks involving movements that have already been established in the abilities of individual performers [1]

  • The participants were from 18–30 years of age and were all right-handed. These participants had no history of mental illness, learning disabilities, or motor control issues that could hinder their performance in the required novel motor task

  • Methods used to facilitate learning are substantial contributors to the learning process. Practice is one such contributor used to facilitate the learning of a new skill, and this study suggests that EEG can lead to inferences with regard to the learning of a new skill

Read more

Summary

Introduction

Research in motor learning has been performed with nonfunctional, non-novel tasks involving movements that have already been established in the abilities of individual performers [1]. These tasks generally require individuals to utilize existing movement patterns or adaptations instead of forcing them to fully learn new skills (e.g., shooting a basketball, learning a tennis stroke, or adapting a previously learned movement). Is a true novel skill being learned, even though many of these tasks are defined as novel or new [1]. The second method uses continuous psychophysiological measures to provide real time accounts for the physiological responses that take place during learning

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call