Abstract

Training of Generative Adversarial Network (GAN) on a video dataset is a challenge because of the sheer size of the dataset and the complexity of each observation. In general, the computational cost of training GAN scales exponentially with the resolution. In this study, we present a novel memory efficient method of unsupervised learning of high-resolution video dataset whose computational cost scales only linearly with the resolution. We achieve this by designing the generator model as a stack of small sub-generators and training the model in a specific way. We train each sub-generator with its own specific discriminator. At the time of the training, we introduce between each pair of consecutive sub-generators an auxiliary subsampling layer that reduces the frame-rate by a certain ratio. This procedure can allow each sub-generator to learn the distribution of the video at different levels of resolution. We also need only a few GPUs to train a highly complex generator that far outperforms the predecessor in terms of inception scores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.