Abstract

This paper presents train-induced dynamic response and fatigue damage analyses for the hangers of a tied-arch railway bridge. A train–bridge interaction analysis is carried out using the vector form intrinsic finite element method, through which the inertial force effect of the moving train can be effectively analyzed. The responses of the bridge deck and its hangers are investigated at resonant train speeds. Significantly larger stresses are observed on the shorter hangers near the arch anchorages, which is primarily caused by the first two anti-symmetrical vibration modes. The fatigue damage to the hangers is estimated using the Palmgren-Miner model (PMM) for linear fatigue damage accumulation and the continuum damage mechanics (CDM) method for nonlinear accumulation. The mean stress effect is considered in the S–N curve primarily by Smith–Watson–Topper equation in terms of the effective stress range with a zero-mean stress. Two probability distributions for train speed are considered for the current and future operating conditions with mean speeds of 220 and 300[Formula: see text]km/h, respectively. This study found that the fatigue lives estimated by the nonlinear CDM are significantly shorter than those estimated by the linear PMM. It also found that the shortest hanger reflects the shortest fatigue life at the current operating speed, whereas the longer hanger near the third point of the bridge deck may have the shortest fatigue life at an increased speed in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.