Abstract

In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.

Highlights

  • Wireless sensor and actor networks (WSANs) [1,2,3] are composed of a large number of sensor nodes and several mobile actors

  • There are 400 sensor nodes uniformly deployed in a 400 m × 400 m area

  • We consider the problem of transmitting the event report to the mobile actor in wireless sensor and actor networks

Read more

Summary

Introduction

Wireless sensor and actor networks (WSANs) [1,2,3] are composed of a large number of sensor nodes and several mobile actors. The mobile actors move in a large area to execute missions, such as rescuing survivors or fire surveillance. The sensor nodes monitor the area and provide supports for the actors. When an event of interest is detected, the sensor node should forward an event report to inform the actor. For the mobility of the actor, its location information is always unavailable for the sensor node, which makes the event report transmission a challenging issue.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.