Abstract

Intracellular cholesterol distribution impacts cell function; however, processes influencing endogenous cholesterol trafficking remain largely unknown. Atherosclerosis is associated with vascular inflammation and these studies address the role of inflammatory mediators on smooth muscle cell cholesterol trafficking. Interestingly, in the absence of an exogenous cholesterol source, serum amyloid A increased [(14)C] oleic acid incorporation into cholesteryl ester in rat smooth muscle cells, suggesting endogenous cholesterol trafficking to the endoplasmic reticulum. [(3)H] cholesteryl ester accumulated in cells prelabeled with [(3)H] cholesterol, confirming that serum amyloid A mediated the movement of endogenous cholesterol. Cholesterol movement was dependent upon functional endolysosomes. The cholesterol oxidase-sensitive pool of cholesterol decreased in serum amyloid A-treated cells. Furthermore, the mechanism whereby serum amyloid A induced cholesterol trafficking was determined to be via activation of expression of secretory phospholipase A(2), group IIA (sPLA(2)) and sPLA(2)-dependent activation of sphingomyelinase. Interestingly, although neither tumor necrosis factor-α nor interferon-γ induced cholesterol trafficking, interleukin-1β induced [(14)C] cholesteryl ester accumulation that was also dependent upon sPLA(2) and sphingomyelinase activities. Serum amyloid A activates smooth muscle cell interleukin-1β expression, and although the interleukin-1-receptor antagonist inhibited the interleukin-1β-induced cholesterol trafficking, it had no effect on the movement of cholesterol mediated by serum amyloid A. These data support a role for inflammation in endogenous smooth muscle cell cholesterol trafficking from the plasma membrane to the endoplasmic reticulum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.