Abstract

Major barriers to delivery of biomolecules are crossing the cellular membranes and achieving a high cytoplasmic concentration by circumventing entrapment into endosomes and other lytic organelles. Motivated by such aim, we have investigated the capability of multiwalled carbon nanotubes (MWCNTs) to penetrate the cell membrane of plant protoplasts (plant cells made devoid of their cell walls via enzymatic treatment) and studied their internalization mechanism via confocal imaging and TEM techniques. Our results indentified an endosome-escaping uptake mode of MWCNTs by plant protoplasts. Moreover, short MWCNTs (<100 nm) were observed to target specific cellular substructures including the nucleus, plastids, and vacuoles. These findings are expected to have a significant impact on plant cell biology and transformation technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.