Abstract
Multi-target multi-camera tracking (MTMCT), i.e., tracking multiple targets across multiple cameras, is a crucial technique for smart city applications. In this paper, we propose an effective and reliable MTMCT framework for vehicles, which consists of a traffic-aware single camera tracking (TSCT) algorithm, a trajectory-based camera link model (CLM) for vehicle re-identification (ReID), and a hierarchical clustering algorithm to obtain the cross camera vehicle trajectories. First, the TSCT, which jointly considers vehicle appearance, geometric features, and some common traffic scenarios, is proposed to track the vehicles in each camera separately. Second, the trajectory-based CLM is adopted to facilitate the relationship between each pair of adjacently connected cameras and add spatio-temporal constraints for the subsequent vehicle ReID with temporal attention. Third, the hierarchical clustering algorithm is used to merge the vehicle trajectories among all the cameras to obtain the final MTMCT results. Our proposed MTMCT is evaluated on the CityFlow dataset and achieves a new state-of-the-art performance with IDF1 of 74.93%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.