Abstract

In Low Power and Lossy Networks (LLNs), not only the transmission qualities between a sender and a receiver, but also the channel contention and resource limitations at the receiver side should be considered. Providing efficient backoff mechanism against channel access collision problem in low-power, low-cost and low data rate networks has received a lot of attention from many researchers in the field. In such networks, the IEEE 802.15.4 Medium Access Control protocol CSMA/CA uses Binary Exponential Backoff (BEB) algorithm to address the channel collision problem. Though BEB reduces collision on the multiple channel access, there is still a high packet drop probability due to the buffer limitation on the receiving node. To overcome this problem, this paper focuses on the BEB issues for LLNs and targets on RPL, which is one of the most popular cooperative routing protocols in LLNs. In RPL, it is not uncommon to have a node with relatively higher traffic than neighbor nodes because children nodes have a tendency to select a good routing metric node as a parent. If traffic concentrates on a good quality parent, it becomes inevitable to get packet loss due to the buffer overflow and channel collision. In this paper we have proposed a Traffic-aware cooperative Binary Exponential Backoff (TBEB) algorithm for LLNs with RPL routing protocol. TBEB handles the multiple channel access issue in such a way that it avoids not only the collision at the sender (child node) side but also the buffer overflow at the receiver (parent node) side without degrading the channel utilization and the throughput efficiency. MATLAB simulator is used to evaluate the performance of the proposed scheme and then compare the result with BEB and Improved BEB. Simulation results show that the TBEB algorithm improves the throughput while minimizing packet discard counts and the channel collision through maintaining good channel utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.